Freshmen Advising: Topics

• The New UG Advising Process
• UCI General Catalogue / CE & EnE Programs
• Courses, Program Changes, Academic Honesty
• Getting Involved: Student Clubs
• Performance Assessment and Accreditation
• Professional Registration, Grad School, Careers

• Questions? E-mail me at mmcnally@uci.edu
• Answers? Read your UCI e-mail regularly!
• **New format**: Each entering class will keep the same group of faculty advisors throughout the program

• **Annual Process**: *every year!*

• **Mandatory Process**:
 – **Group Advising**: sessions for Freshmen in the Fall and separate sessions for Sophomores and for Juniors in the Winter
 – **Individual Advising**: select a faculty member by name, teaching and research area, or session format (sign-ups at Group Session)

• Freshmen are *recommended* to see a faculty advisor every quarter, but *must* see an advisor at least once per year.

• Faculty advising *complements* other forms of advising:
 – HSSOE Counselors
 – Peers
 – Professional mentors
Advisers: Freshmen 2011 (Class of 2015)

Dr. Farzin Zareian
EG 4141
Structures
CEE150, CEE155
zareian@uci.edu

Dr. Russ Detwiler
ET 716E
Water/Environ
CEE171, CEE172
detwiler@uci.edu

Dr. Saphores
AIRB 4028
Transportation
CEE110, CEE125
saphores@uci.edu

Dr. Jasper Vrugs
ET 844E
Water/Environ
CEE 20
jasper@uci.edu
Hydrology & Water Resources Faculty

Dr. Detwiler, ET 844C
Groundwater Hydrology
CEE 171, CEE 172

Dr. Sanders, ET 844D
Computational Hydrodynamics
CEE 170

Dr. Sorooshian, AIRB 2084
Hydrologic Systems
CEE 176

Dr. Gao, AIRB 2085
Hydroclimatology
CEE283

Dr. Hsu, AIRB 2072
Hydrologic Modeling
CEE170

Dr. Aghakouchak
ET 506A
Remote Sensing
CEE81b, CEE173
Water (cont’d.) Environmental Faculty

Dr. Vrugt, ET 844E
Systems Modeling
CEE 20

Dr. Cooper, ET 305
Environmental Chemistry
CEE 162

Dr. Jiang, ET 716E
Water Quality
CEE 160, CEE 167

Dr. Grant, ET 944D
Environmental Engr
CEE 178

Dr. Olson, ET 844
Environmental Microbiology
CEE 60

Dr. Rosso, ET 844F
Environmental Processes
CEE 163
EnE UG Advisor
Transportation Systems Engineering

Dr. Jay, AIRB 4055
Transport Systems Anlys
CEE 81a, CEE 81b

Dr. Jin, AIRB 4038
Traffic Flow, ITS
CEE 11, CEE 122

Dr. McNally, AIRB 4048
Travel Behavior & Modeling
CEE 123, CEE 181abc

Dr. Recker, AIRB 4074
Transport Systems Anlys
CEE 111

Dr. Ritchie, AIRB 4014
ITS, Emerging Technology
CEE 121, CEE 124

Dr. Saphores, AIRB 4028
Transport Planning & Policy
CEE 110, CEE 125
• Q1. Are you currently a freshman or transfer?
If you are new to the CE or EnE programs this fall, you are either a freshman or a transfer, taking math/science courses and planning to take the 2nd year LD core next year (CEE11, 20, 30, 80, 81A, 81B)

• Q2. Is your current Program of Study valid?
If not, you must meet with an HSSoE undergraduate counselor to update this form to ensure your meeting program requirements.

• Q3. Are you scheduled for individual advising?
At the end of this session, you may register for an individual faculty advising session to be held over the next few weeks.

• Sign and Return!
• **Freshmen** *should* schedule an appointment with a faculty advisor each quarter

Your advisor will complete a form to be placed in your file that indicating that you were advised *at least once per year*. FAQs: http://www.its.uci.edu/~mmcnally/FAQ-Fresh-advising.html

• **All transfers** will be assigned to an appropriate faculty cohort for subsequent advising

 – Sophomores, juniors, and seniors will meet with their faculty advisors after the Winter group sessions

 http://www.its.uci.edu/~mmcnally/FAQ-advising.html
FRESHMEN ISSUES

• What’s New?
 – CEE81A and CEE81B: re-introduced in F’11/W’12
 – Gen Ed and CEE60 versus SocEcol E8
 – Science Requirements
 – Engineering Science Elective & Engr. Design Elective

• Grades and pre-requisites

• Choices:
 – Degree programs, Specializations, Minors
 – Student Clubs & Professional Associations

• E-Week – February 2012 – Get Involved!

• Assessment (ABET) & Registration (FE, PE)
1. **Stakeholders:** students, faculty, alumni, and employers

2. **Program Educational Objectives:** accomplishments of graduates expected by a few years after graduation

3. **Program Outcomes:** knowledge and skills to be attained by the time of graduation

4. **Course Outcomes** (or Performance Criteria) are restatements of Program Outcomes that define specific knowledge and skills to be attained in a specific course

5. **Degree Requirements** comprise core, specialization, labs, General Ed, and a capstone design experience
Program Educational Objectives:

Describe the expected accomplishments of graduates during the first few years following graduation. Our graduates are expected to:

1. Establish a Civil Engineering career in industry, government, or academia and achieve professional licensure as appropriate.

2. Demonstrate excellence and innovation in engineering problem solving and design in a global and societal context.

3. Commit to lifelong learning and professional development to stay current in technology and contemporary issues.

4. Take on increasing levels of responsibility and leadership in technical and/or managerial roles.

Note: EnE PEOs are virtually identical
Program Outcomes:

Describe what students are expected to know or be able to do by graduation (a-k)

a. An ability to apply knowledge of mathematics through differential equations; probability and statistics; calculus-based physics; general chemistry; and engineering science in the context of civil engineering applications.

b. An ability to design and conduct laboratory experiments, as well as to critically analyze and interpret data, in two or more recognized major civil engineering areas, such as structures, transportation, water resources, and environmental.

c. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, constructability, and sustainability.

d. An ability to function in multidisciplinary teams.

e. An ability to identify, formulate, and solve civil engineering problems in at least four recognized major civil engineering areas.
BSCE Degree Program

Program Outcomes (continued)

f. An understanding of professional and ethical responsibilities of civil engineers in relation to public and private institutions and in the context of civil engineering infrastructure systems.

g. An ability to communicate effectively, orally and in writing.

h. A broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

i. A recognition of the need for professional licensure and life-long learning.

j. Knowledge of contemporary issues related to civil engineering.

k. An ability to use the techniques, skills, and modern engineering tools necessary for civil engineering practice, and an understanding of professional practice issues such as project management and interactions between the development, design, and construction professions.
Sample Course Syllabus & Outcomes

CEE 30 STATICS
(Required for CE and EnE)

Catalog Data: CEE 30: Statics (Credit Units 4) Addition and resolution of forces, distributed forces, equivalent system of forces, centroids, first moments, moments and products on inertia, equilibrium of rigid bodies, trusses, beams, cables. Corequisite or prerequisite: Mathematics 2D. Prerequisite: Physics 7A. Only one course from CEE30, ENGR30, and MAE30 may be taken for credit (Design Units: 0)

Relationship to Program Outcomes: - The course relates to Program Outcomes
CE: a and e as stated at:
http://undergraduate.eng.uci.edu/degreeprograms/civil/mission
EnE: a and e as stated at:
http://undergraduate.eng.uci.edu/degreeprograms/environmental/mission

Course Outcome/Performance Criteria: Students will:
Analyze and draw free body diagrams for single particles and rigid body systems.
Establish equilibrium equations of particles/rigid bodies for solve for forces and support reactions.
Calculate centroids of areas and moments of inertia.
Apply the theory and methods to analyze simple trusses.
Compute internal forces in cables/beams.
Formulate statics problems for simple structural beams.
CE Course Requirements 1

Mathematics and Basic Science (48 units)

- Math2A-B-D-E-J, 3D, CEE 11
- Phys7C-D and 7LC-D
- Chem1A-B ; either Chem1C and 1LC or Chem1LE

General Education Requirements (44+ units)

- Provides flexibility, overlaps encouraged, etc.
- Engineering Professional Topics Courses include Economics 20A-B and CEE60 (or SocEcol E8)
- E190W Upper Division Writing
Engineering Topics Courses (77 units):

- LD Core: EECS 10, CEE 20, 30, 81A-B
- UD Core: CEE 110, 111, 121, 130, 130L, 150, 150L, 151A, 151C, 160, 170, and 171
- Engineering Science Elective (EECS70A, ENGR54, MAE80, MAE91)
- Engineering Design Elective (one of 155, 172, 122 or 123)
- Senior Design Practicum: CEE 181A-B-C

Specialization or Concentration (16+ units)

- Must complete senior design project in same area

Summary

- A nominal total of 187 units (22+ design units)
BSCE: Freshman 2011-2012

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2A</td>
<td>4</td>
<td>Math 2B</td>
<td>4</td>
</tr>
<tr>
<td>EECS 10</td>
<td>4</td>
<td>Phys 7C, L</td>
<td>5</td>
</tr>
<tr>
<td>Chem 1A</td>
<td>4</td>
<td>Chem 1B</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Chem 1LE</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

- Gen Ed Recommendation: WR39B-C, CEE60
- **EECS10, EECS12, MAE10, or any** programming course!
BSCE: Sophomore 2012-2013

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2J</td>
<td>4</td>
<td>Math 3D</td>
<td>4</td>
</tr>
<tr>
<td>Math 2E</td>
<td>4</td>
<td>Math 2E</td>
<td>4</td>
</tr>
<tr>
<td>CEE 30</td>
<td>4</td>
<td>Engr Sci</td>
<td>4</td>
</tr>
<tr>
<td>CEE 11</td>
<td>4</td>
<td>CEE 11</td>
<td>4</td>
</tr>
<tr>
<td>CEE81A</td>
<td>3</td>
<td>CEE81B</td>
<td>2</td>
</tr>
<tr>
<td>CEE 20</td>
<td>2</td>
<td>CEE 20</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Engr Sci.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

- Gen Ed Recommendation: Econ 20A-B, **CEE60**
- **Engr Science** Elective: EECS70A, ENGR54, **MAE80**, MAE91
- CEE81A is pre-requisite for CEE81B
<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 150, L</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CEE 170</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CEE 121</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

- Civil Engineering “core”; *pre-requisites are important!*

2010
BSCE: Senior 2014-2015

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 181A</td>
<td>2</td>
<td>CEE 181B</td>
<td>2</td>
</tr>
<tr>
<td>Engr Dsgn</td>
<td>4</td>
<td>CEE 111</td>
<td>4</td>
</tr>
<tr>
<td>Spec. Elec.</td>
<td>4</td>
<td>Spec. Elec.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

- UD Writing => E190W
- **Engr Design** Elective (122, 123, 155, or 172) – quarter varies!
- **Specialization Elective**: flexibility with 4th course!
Specializations 1

General Civil Engineering:
Requires four courses from CEE122 or CEE123; CEE149, CEE152, CEE153, CEE155, or CEE156; CEE162, CEE163, CEE167, or CEE168; CEE172, CEE176, or CEE178; or CEE55 or courses from an approved list.

Environmental Hydrology & Water Resources:
Requires four courses from CEE162, CEE163, CEE172, CEE173, CEE176, CEE178, or courses from an approved list.
Specializations 2

Structural Engineering:
Requires CEE153 and three courses from CEE152, CEE155, CEE156, MAE157, or courses from an approved list [also requires CEE155 as the EDD]

Transportation Systems Engineering:
Requires CEE122 and CEE123, and two courses from CEE 124, CEE125, ECE 70A, MAE 140, MAE 170, MAE 171, or courses from an approved list [or E189 ITE Project]
Concentrations comprise courses primarily from other Schools and thus more courses than for specializations. *CEE does not control the scheduling for these courses.*

Computer Applications:
Requires at least five classes or 20 units from ICS/Math 6A, ICS21, 22, 23, 52, EECS 20, EECS 40, and other approved courses.

Infrastructure Planning:
Concentrations 2

Mathematical Methods:
Requires Math 13 and 140A, and 4 other courses selected from Math 6A, 105A and 105LA (or MAE 185), 105B and 105LB, 107, 112A-B-C, 118A-B-C, 130A-B-C, 131A-B-C, and other approved courses

Engineering Management * :
Requires MGT 1 and five other courses from MGT 101, 102, 107, 122, 159, 182, 184, 189, 196, and 197, and other approved courses (*tentative to approval*)

• must be admitted to PMSOB UG Minor in Management (UD)

Note: Please consider concentrations with care!
Key Pre-requisites

BSCE Prerequisite Chains for CEE181ABC

10 → 11 → 81A → 81B
160 → 110 → 121

170 → 130 → 151A
150 → 30

181A-B-C

111 123 20 151B 162 172 60
122 55 152 163 173 80
124 153 167 176
125 155 168 178
125 156

Note:
a. Math and science pre-reqs are not shown
b. For 1 through 7, specific pre-reqs are not shown
c. For 4, there are no formal pre-reqs
Program Educational Objectives:

Describe the expected accomplishments of graduates during the first few years following graduation. Our graduates are expected to:

1. Establish an Environmental Engineering career in industry, government, or academia and achieve professional licensure as appropriate.
2. Demonstrate excellence and innovation in engineering problem solving and design in a global and societal context.
3. Commit to lifelong learning and professional development to stay current in technology and contemporary issues.
4. Take on increasing levels of responsibility and leadership in technical and/or managerial roles.
EnE Program Outcomes:

Describe what students are expected to know or be able to do by graduation (a-k)

a. An ability to apply knowledge of mathematics through differential equations, probability and statistics, calculus-based physics, general chemistry, an earth science and biological science relevant to environmental engineering, and fluid mechanics in the context of environmental engineering.

b. An ability to design and conduct experiments, as well as to analyze and interpret data in more than one environmental engineering focus area such as: air, water, land or environmental health.

c. An ability to design an environmental engineering system, component, or process to meet desired needs within realistic constraints such as economic, social, ethical, political, constructability, and sustainability.

d. An ability to function in multidisciplinary teams.

e. An ability to identify, formulate, and solve engineering problems in more than one environmental engineering focus area such as: air, water, land or environmental health.
BS EnE Degree Program

EnE Program Outcomes (continued)

f. An understanding of professional and ethical responsibilities of environmental engineers in relation to public and private institutions and in the context of environmental systems (e.g., drinking water distribution, waste management).

g. An ability to communicate effectively, orally and in writing.

h. A broad education necessary for understanding the societal and economic impacts of engineering solutions to environmental problems at both regional and global scales.

i. Recognition of the need for, and an ability to engage in life-long learning.

j. Knowledge of contemporary issues related to environmental engineering.

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice, an understanding of the importance of licensure for professional practice, and an introduction to administrative business (planning, contracting, etc.) of professional practice.
EnE Course Requirements 1

Mathematics and Basic Science (64 units)
- Math 2A-B-D-J, 3D, 2E
- Phys 7C-D, 7LC-D
- Chem 1A-B-C, 1LC or 1LE, 51A
- 4 units of Earth System Science and 4 units of Biological Sciences

General Education Requirements (44+ units)
- Engineering Professional Topics Courses include:
- Economics 20A-B and CEE60 (or Soc Ecol E8)
- E190W for Upper Division Writing
EnE Course Requirements 2

Engineering Topics Courses (81+ units):

- LD Core: EECS 10, CEE 11, 20, 30, 80, 81A, 81B, MAE91
- UD Core: CEE 110, 130, 130L, 150, 150L, 160, 162, 170
- Senior Design Practicum: CEE 181A-B-C (options)
- Engineering Electives (2 from 2 areas/1 from other):
 - Water Supply and Resources (CEE171, 172, 173, 176, 178, ESS132)
 - Environmental Processes (CEE163, 167)
 - Atmos Systems & Air Poll Control (MAE110, 115, 162, 164, ESS 112)
- Econ 20A-B and either CEE60 or SocEcol E8
- A nominal total of 189 units

- Must verify Program of Study and unit counts with UG Office
BS EnE: Freshman 2011-2012

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2A</td>
<td>4</td>
<td>Math 2B</td>
<td>4 Math 2D</td>
</tr>
<tr>
<td>EECS 10</td>
<td>4</td>
<td>Phys 7C, L</td>
<td>5 Phys 7D, L</td>
</tr>
<tr>
<td>Chem 1A</td>
<td>4</td>
<td>Chem 1B</td>
<td>4 Chem 1C, L</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4 Gen. Ed.</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td>19</td>
</tr>
</tbody>
</table>

- Gen Ed Recommendation: WR39B-C or CEE60
- EECS10, EECS12, MAE10, or *any* programming course!

2010
BS EnE: Sophomore 2012-2013

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2J</td>
<td>4 Math 3D</td>
<td>4 Math 2E</td>
</tr>
<tr>
<td>CEE 81A</td>
<td>3 CEE 81B</td>
<td>2 MAE 91</td>
</tr>
<tr>
<td>CEE 30</td>
<td>4 MAE 80</td>
<td>4 CEE 11</td>
</tr>
<tr>
<td>Chem 51A</td>
<td>4 Gen. Ed.</td>
<td>4 CEE 20</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14</td>
</tr>
</tbody>
</table>

- Gen Ed Recommendation: CEE60
BS EnE: Junior 2013-2014

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 150, L</td>
<td>5</td>
<td>CEE 130, L</td>
<td>5</td>
</tr>
<tr>
<td>CEE 170</td>
<td>4</td>
<td>CEE 162</td>
<td>4</td>
</tr>
<tr>
<td>Sci. Elect.</td>
<td>4</td>
<td>Eng. Elect.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

- Consider pre-requisites!
- Science Electives: 1 each in Bio Sci and Earth Systems Sci
BS EnE: Senior 2014-2015

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 181A</td>
<td>2</td>
<td>CEE 181B</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Elect.</td>
<td>4</td>
<td>Eng. Elect.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Eng. Elect.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>

- Spread Gen Ed (include Econ 20A-B, UD Writing)
- Consider pre-requisites for Science and Engineering Electives
1. General Education requirements:
 - Writing (3 courses: 2 LD and 1 UD)
 - Arts and Humanities (3 courses)
 - Social and Behavioral Sciences (3 courses)
 - Multicultural Studies / International Issues (1)

2. BSCE and BSEnE already cover:
 - Science and Technology
 - Quantitative, Symbolic, Computational Reasoning

3. Need to consult with HSSoE counselors
http://undergraduate.eng.uci.edu
Winter 2011 Course Learning Outcome Surveys Now Available

Engineering course learning outcomes surveys are once again available. Students are asked to complete a brief survey for each enrolled undergraduate Engineering course. These are similar to teaching evaluations but rather than focus on the quality of instruction, they focus on whether students have met the outcomes determined for each course. Course learning outcome surveys will remain open until March 28, 2011.

Fall 2010 Course Learning Outcome Surveys Now Available

Engineering course learning outcomes surveys are once again available. Students are asked to complete a brief survey for each enrolled undergraduate Engineering course. These are similar to teaching evaluations but rather than focus on the quality of instruction, they focus on whether students have met the outcomes determined for each course.

Fall 2010 course learning outcome surveys are now closed. Thank you for participating.

http://plaza.eng.uci.edu
Universal Technical Services

http://www.eng.uci.edu/dept/cee/
Academic Honesty

• Civil and Environmental Engineering is perhaps at the pinnacle of the practice of, and the need for, ethical behavior.

• At you progress through the program, any form of cheating has *minimum benefit* (on grades) and *maximum cost* (of not finishing your degree).

• The **UCI Policy on Academic Honesty** is defined at: http://www.editor.uci.edu/catalogue/appx/appx.2.htm#academic

• Take note of the descriptions of *cheating, dishonest conduct, plagiarism, and collusion*.

• Ask your instructors to discuss course policies on Academic Honesty, including policies on joint work on HW, labs, or other required tasks.
1. **Profession Registration**: licensure as a professional engineer is required to practice as a civil or environmental engineer.

2. **Steps Toward Licensure: First…**
 a. Complete a BS from an accredited institution (UCI!)
 b. Successfully complete the *Fundamentals of Engineering* exam (material covered includes physics, chemistry, thermo, circuits, mathematics, statics & dynamics, engineering economics, fluids, engineering ethics, strength of materials, computers, etc.)

3. **Steps Toward Licensure: Then…**
 a. After 2 years of work under professional engineers …
 b. … soon 30 units of post-graduate continuing education
 c. Successfully complete the *Principles and Practice of Engineering* (PE)
 d. http://www.ncees.org/exams/professional/
Why study Civil Engineering abroad?

"As a Civil Engineering student studying abroad, you will gain exposure to different modes of problem solving, leading toward different approaches to the design and implementation of civil engineering projects. In light of the increasing globalization of engineering practice, this acquired knowledge will likely be beneficial in your future engineering career. You will see the significance of US building codes and how these are implemented in other countries, as well as how the US adopts sections of engineering building codes from other countries. EAP programs often have more academic support staff to assist engineering professors with computing, wet/dry, and field labs, which leads toward more meaningful laboratory experiences. Not only will EAP be one of the most memorable times in your life, the international experience will open a world of engineering opportunities in your future."

Professor Michael McNally
Department of Civil & Environmental Engineering

http://www.cie.uci.edu/academics/ce.html
Summary

1. Academic Honesty...
2. Faculty Advising versus HSSOE Counselors
3. ABET evaluations versus UCI course evaluations
4. Petitions: substitutions, variations, and related issues
5. Student Clubs? [G-E-T I-N-V-O-L-V-E-D]
6. Research Opportunities, Internships, Jobs
7. Careers: Graduate School? (GRE)
8. Careers: Professional Practice (FE, PE)
Contact Information

HSSOE UG Affairs Office:
1. UG Counselors in ECT 101 (824-4334)
2. Web site: http://undergraduate.eng.uci.edu/

Civil & Environmental Engineering:
1. Department Office in EG 4130 (824-5333)
2. CEE web site: http://www.eng.uci.edu/dept/cee/
3. CE Advisor: Professor McNally <mmcnally@uci.edu>
4. EnE Advisor: Professor Rosso bidui@uci.edu

• UCI General Catalogue: Your contract with UC
 http://www.editor.uci.edu/catalogue/engr/engr.6.htm