Sophomore Advising: Topics

• The UG Advising Process
• UCI General Catalogue / CE & EnE Programs
• Courses, Program Changes, Academic Honesty
• Getting Involved: Student Clubs
• Performance Assessment and Accreditation
• Professional Registration, Grad School, Careers

• Questions? E-mail me at mmcnally@uci.edu
• Answers? Read your UCI e-mail regularly!
• **Format:** Each entering class will keep the same group of faculty advisors throughout the program.

• CEE Faculty Advising is an *Annual Process*!

• CEE Faculty Advising is a *Mandatory Process*:
 - **Group Advising:** sessions for Freshmen in the Fall and separate sessions for Sophomores and for Juniors in the Winter
 - **Individual Advising:** throughout the year for Freshmen and directly after Group Sessions for Sophomores and Juniors.

• Students are *recommended* to see a faculty advisor every quarter, but *must* see an advisor following Group Advising.

• Faculty advising *complements* other forms of advising:
 - HSSOE Counselors (Rockwell 3rd floor – REC 305 suite)
 - Peers
 - Professional mentors.
Advisers: Sophomore 2011/12 (Class of 2014)

Dr. Amir Aghakouchak
ET 506A
Water/Environmental
CEE81B, CEE181
amir.a@uci.edu

Dr. Betty Olson
ET 844
Water/Environmental
CEE60
bholson@uci.edu

Dr. Will Recker
AIRB 4074
Transportation
CEE 111
wwrecker@uci.edu

Dr. Jann Yang
EG 4135
Structures
CEE 153
jnyang@uci.edu
Structural Engineering Faculty

Dr. Feng
EG 4165
Structural Monitoring
CEE151A

Dr. Mosallam
EG 4149
Composite Structures
CEE 151C, ASCE

Dr. Shinozuka
EG 4150
Earthquake Engr
CEE11

Dr. Lemnitzer
EG 4149
Geotechnical
CEE130, CEE156

Dr. Sun
EG 4139
Mechanics
Composites
CEE 30, CEE 152

Dr. Yang
EG 4135
Structural Control
and Dynamics
CEE153

Dr. Zareian
EG 4141
Earthquake Engr
CEE 150, CEE155
Transportation Systems Engineering

Dr. Jay, AIRB 4055
Transport Systems Anlys
CEE 81a-b, CEE 110

Dr. Jin, AIRB 4038
Traffic Flow, ITS
CEE 11, CEE122

Dr. McNally, AIRB 4048
Travel Behavior & Modeling
CEE123, CEE181abc

Dr. Recker, AIRB 4074
Transport Systems Anlys
CEE 111

Dr. Ritchie, AIRB 4014
ITS, Emerging Technology
CEE121, CEE124

Dr. Saphores, AIRB 4028
Transport Planning & Policy
CEE 110, CEE125
Hydrology & Water Resources Faculty

Dr. Detwiler, ET 844C
Groundwater Hydrology
CEE 171, CEE 172

Dr. Sanders, ET 844D
Computational Hydrodynamics
CEE 170

Dr. Sorooshian, AIRB 2084
Hydrologic Systems
CEE 176

Dr. Gao, AIRB 2085
Hydroclimatological
CEE 283

Dr. Hsu, AIRB 2072
Hydrologic Modeling
CEE 170

Dr. Aghakouchak
ET 506A
Remote Sensing
CEE 81b, CEE 173
Dr. Vrugt, ET 844E
Systems Modeling
CEE 20

Dr. Cooper, ET 305
Environmental Chemistry
CEE 162

Dr. Jiang, ET 716E
Water Quality
CEE 160, CEE 167

Dr. Grant, ET 944D
Environmental Engr
CEE178

Dr. Olson, ET 844
Environmental Microbiology
CEE 60

Dr. Rosso, ET 844F
Environmental Processes
CEE163
Q1. Are you currently a CEE Sophomore?
You are taking typical sophomore classes, including second year math courses as well as courses such as CEE30, 81A-B, 20, and 11. Sophomores will take junior CEE core courses next year.

Q2. Is your current Program of Study valid?
If not, you must meet with an HSSoE undergraduate counselor to update this form to ensure your meeting program requirements.

Q3. Are you scheduled for individual advising?
At the end of this session, you may register for an individual faculty advising session to be held over the next few weeks.

Sign and Return!
• All **sophomores** must schedule an appointment with a sophomore faculty advisor this quarter. You will complete a form to be placed in your file that indicating that you attended individual advising this winter quarter. FAQs: http://www.its.uci.edu/~mmcnally/FAQ-advising-w11.html

• This winter, **sophomore individual advising** will be *individual* or *small group* sessions:
 – Be sure to sign-up at the end of today’s session
 – If you miss the small group sessions, you must arrange to meet individually with one of your soph advisors
SOPHOMORE ISSUES

• What’s New?
 – CEE81A and CEE81B: re-introduced fall/winter 2011/12
 – CEE60 versus SocEcol E8
 – Changes in Chemistry requirements

• Grades and pre-requisites

• Choices:
 – Degree programs, Specializations, Minors, Gen. Ed.
 – Student Clubs & Professional Associations

• E-Week: February 19-26, 2011 – Get Involved
ABET Program Assessment

1. **Stakeholders**: students, faculty, alumni, and employers

2. **Program Educational Objectives**: accomplishments of graduates expected by a few years after graduation

3. **Student Outcomes**: knowledge and skills to be attained by the time of graduation (also known as “a-k”)

4. **Course Outcomes** (or Educational Outcomes) are restatements of Program Outcomes that define specific knowledge and skills to be attained in a specific course

5. **Degree Requirements** comprise core, specialization, labs, General Ed, and a capstone design experience
BSCE Degree Program

Program Educational Objectives:

Describe the expected accomplishments of graduates during the first few years following graduation. Our graduates are expected to:

1. Establish a Civil Engineering career in industry, government, or academia and achieve professional licensure as appropriate.
2. Demonstrate excellence and innovation in engineering problem solving and design in a global and societal context.
3. Commit to lifelong learning and professional development to stay current in technology and contemporary issues.
4. Take on increasing levels of responsibility and leadership in technical and/or managerial roles.

Note: EnE PEOs are virtually identical
BSCE Degree Program

Program Outcomes:
Describe what students are expected to know or be able to do by graduation (a-k)

a. An ability to apply knowledge of mathematics through differential equations; probability and statistics; calculus-based physics; general chemistry; and engineering science in the context of civil engineering applications.

b. An ability to design and conduct laboratory experiments, as well as to critically analyze and interpret data, in two or more recognized major civil engineering areas, such as structures, transportation, water resources, and environmental.

c. An ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, constructability, and sustainability.

d. An ability to function in multidisciplinary teams.

e. An ability to identify, formulate, and solve civil engineering problems in at least four recognized major civil engineering areas.
BSCE Degree Program

Program Outcomes (continued)

f. An understanding of professional and ethical responsibilities of civil engineers in relation to public and private institutions and in the context of civil engineering infrastructure systems.

g. An ability to communicate effectively, orally and in writing.

h. A broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context.

i. A recognition of the need for professional licensure and life-long learning.

j. Knowledge of contemporary issues related to civil engineering.

k. An ability to use the techniques, skills, and modern engineering tools necessary for civil engineering practice, and an understanding of professional practice issues such as project management and interactions between the development, design, and construction professions.
ENGRCEE 30 STATICS
(Required for AE, CE, EnE, ME and MSE.)

Catalog Data: ENGRCEE 30 Statics (Credit Units: 4) Addition and resolution of forces, distributed forces, equivalent systems of forces centroids, first moments, moments and products on inertia, equilibrium of rigid bodies, trusses, beams, cables. Corequisite: Mathematics 2D. Prerequisite: Physics 7C. Same as ENGR 30 and ENGRMAE 30. (Design units: 0)

Coordinator: Lizhi Sun

Relationship to Student Outcomes
This course relates to Student Outcomes: EAC a, EAC e.

Course Learning Outcomes. Students will:
1. Analyze and draw free body diagrams for single particles and rigid body systems. (EAC a)
2. Establish equilibrium equations of particles/rigid bodies for solve for forces and support reactions. (EAC a)
3. Calculate centroids of areas and moments of inertia. (EAC a)
4. Apply the theory and methods to analyze simple trusses. (EAC e)
5. Compute internal forces in cables/beams. (EAC e)
6. Formulate statics problems for simple structural beams. (EAC e)

http://plaza.eng.uci.edu/course/outline/engrcee/
CE Course Requirements 1

Mathematics and Basic Science (48 units)
- Math2A-B-D-J, 3A-D, 2E
- Phys7C-D and 7LC-D, Chem1A-B
- (Science Elective and Chem1LE) or (Chem1C, 1LC)

General Education Requirements (44+ units)
- Provides flexibility, overlaps encouraged, etc.
- Engineering Professional Topics Courses include Economics 20A-B and CEE60 (or SocEcol E8)
- E190W is now required for UD Writing requirement (other options are available via petition)
Engineering Topics Courses (77 units):
• LD Core: EECS 10 (or other), CEE 11, 20, 30, 80, 81A-B
• UD Core: CEE 110, 111, 121, 130, 130L, 150, 150L, 151A, 151C, 160, 170, and 171
• Engineering Science Elective (materials, circuits, thermo, dynamics)
• Engineering Design Elective (one of 155, 172, 122 or 123)
• Senior Design Practicum: CEE 181A-B-C
• CEE81A and 81B re-introduced in Fall/Winter 2011/12

Specialization or Concentration (16+ units)
• Must complete senior design project in same area

Summary
• A nominal total of 186 units (22+ design units)
BSCE: Freshman 2010-2011

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2A</td>
<td>Math 2B</td>
<td>Math 2D</td>
</tr>
<tr>
<td>EECS 10</td>
<td>Phys 7C, L</td>
<td>Phys 7D, L</td>
</tr>
<tr>
<td>Chem 1A</td>
<td>Chem 1B, L</td>
<td>Sci. Elect.</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

- Gen Ed Recommendation: WR39B-C, CEE60
- EECS10, EECS12, MAE10, or *any* programming course!
<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2J/3A</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CEE 30</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CEE81A</td>
<td>3</td>
<td>2/3</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>14</td>
<td>16</td>
</tr>
</tbody>
</table>

- Gen Ed Recommendation: Econ 20A-B, **CEE60**
- **Engr Science** Elective => fall, winter, or spring
BSCE: Junior 2012-2013

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 150, L</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>CEE 170</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>CEE 121</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>E190W</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

- **Engr Design elective** moves to senior year; take CEE151C
- **E190W** is now required (may petition other options)
- Civil Engineering “core”; *pre-requisites are important!*
BSCE: Senior 2013-2014

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 181A</td>
<td>2</td>
<td>CEE 181B</td>
<td>2</td>
</tr>
<tr>
<td>CEE 181B</td>
<td></td>
<td></td>
<td>CEE 181C</td>
</tr>
<tr>
<td>Spec. Elec.</td>
<td>4</td>
<td>CEE 111</td>
<td>4</td>
</tr>
<tr>
<td>Spec. Elec.</td>
<td></td>
<td>Spec. Elec.</td>
<td>4</td>
</tr>
<tr>
<td>Spec. Elec.</td>
<td></td>
<td></td>
<td>Spec. Elec.</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td></td>
<td></td>
<td>Gen. Ed.</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

- Specialization or concentration, and 181 sequence
- **Specialization Elective:** flexibility with 4th course!
Specializations 1

General Civil Engineering:
Requires four (three) courses from CEE122 or CEE123; CEE149, CEE152, CEE153, CEE155, or CEE156; CEE162, CEE163, or CEE167; CEE172, CEE176, or CEE178; or CEE55 or courses from an approved list.

Environmental Hydrology & Water Resources:
Requires four (three) courses from CEE162, 163, 167, CEE172, 173, 176, or 178, or courses from an approved list.
Specializations 2

Structural Engineering:
Requires CEE153 and three (two) courses from CEE149, CEE152, CEE155, CEE156, MAE157, or courses from an approved list [requires CEE155 as the Engr Design Elective]

Transportation Systems Engineering:
Requires CEE122 and CEE123, and two (one) courses from CEE124, CEE125, E189, EECS70A, MAE140, MAE170, MAE171, or courses from an approved list.
Concentrations comprise courses primarily from other Schools and thus more courses than for specializations. *CEE does not control the scheduling for these courses.*

Computer Applications:
Requires at least five classes or 20 units from ICS/Math 6A, ICS21, 22, 23, 52, EECS 20, EECS 40, and other approved courses.

Infrastructure Planning *:
Requires PPD 4 and 107 and four courses from CEE123, CEE125, PPD 107, 108, 109, 110, 131, 132, 133, 135, 138, 139, 155, 156, and other courses from an approved list.
Concentrations 2

Mathematical Methods:
Requires Math 13 and 140A, and 4 other courses selected from Math 6A, 105A and 105LA (or MAE 185), 105B and 105LB, 107, 112A-B-C, 118A-B-C, 130A-B-C, 131A-B-C, and other approved courses

Engineering Management *:
Requires Management 1 and five other courses selected from Management 102, 107, 122, 159, 182, 184, 189, 196, and 197. Prospective students must first be admitted to The Paul Merage School of Business undergraduate minor in Management, which requires completion of Management 1, Econ 20A, and CEE11.
Key Pre-requisites

BSCE Prerequisite Chains for CEE181ABC

10 → 3 → 11 → 81A → 81B → 130 → 150
160 → 110 → 121 → 2 → 171 → 7

181A-B-C

1 111 123 20 151B 162 172 60
122 55 152 163 173 80
124
125
153 167 176
155 168
156

Note:
a. Math and science pre-reqs are not shown
b. For 1 through 7, specific pre-reqs are not shown
c. For 4, there are no formal pre-reqs
Program Educational Objectives:

Describe the expected accomplishments of graduates during the first few years following graduation. Our graduates are expected to:

1. Establish an Environmental Engineering career in industry, government, or academia and achieve professional licensure as appropriate.
2. Demonstrate excellence and innovation in engineering problem solving and design in a global and societal context.
3. Commit to lifelong learning and professional development to stay current in technology and contemporary issues.
4. Take on increasing levels of responsibility and leadership in technical and/or managerial roles.
EnE Program Outcomes:

Describe what students are expected to know or be able to do by graduation (a-k)

a. An ability to apply knowledge of mathematics through differential equations, probability and statistics, calculus-based physics, general chemistry, an earth science and biological science relevant to environmental engineering, and fluid mechanics in the context of environmental engineering.

b. An ability to design and conduct experiments, as well as to analyze and interpret data in more than one environmental engineering focus area such as: air, water, land or environmental health.

c. An ability to design an environmental engineering system, component, or process to meet desired needs within realistic constraints such as economic, social, ethical, political, constructability, and sustainability.

d. An ability to function in multidisciplinary teams.

e. An ability to identify, formulate, and solve engineering problems in more than one environmental engineering focus area such as: air, water, land or environmental health.
EnE Program Outcomes (continued)

f. An understanding of professional and ethical responsibilities of environmental engineers in relation to public and private institutions and in the context of environmental systems (e.g., drinking water distribution, waste management).

g. An ability to communicate effectively, orally and in writing.

h. A broad education necessary for understanding the societal and economic impacts of engineering solutions to environmental problems at both regional and global scales.

i. Recognition of the need for, and an ability to engage in life-long learning.

j. Knowledge of contemporary issues related to environmental engineering.

k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice, an understanding of the importance of licensure for professional practice, and an introduction to administrative business (planning, contracting, etc.) of professional practice.
EnE Course Requirements 1

Mathematics and Basic Science (64 units)
• Math 2A-B-D-J, 3A-D, 2E
• Phys 7C-D, 7LC-D
• Chem 1A-B-C, 1LB, 1LC-D, 51A, 51LA
• 4 units of Earth System Science and 4 units of Biological Sciences

General Education Requirements (44+ units)
• Engineering Professional Topics Courses include:
• Economics 20A-B and CEE60 (or Soc Ecol E8)
• E190W is now required for UD Writing requirement (other options are available via petition)
Engineering Topics Courses (81+ units):

• LD Core: EECS 10, CEE 11, 20, 30, 80, 81A, 81B, MAE91
• UD Core: CEE 110, 130, 130L, 150, 150L, 160, 162, 170
• Senior Design Practicum: CEE 181A-B-C (options)
• Engineering Electives (2 from 2 areas/1 from other):
 – Water Supply and Resources (CEE171, 172, 173, 176, 178, ESS132)
 – Environmental Processes (CEE163, 167)
 – Atmos Systems & Air Poll Control (MAE110, 115, 164, ESS 112)
• Econ 20A-B and either CEE60 or SocEcol E8
• A nominal total of 190 units

• Must verify Program of Study and unit counts with UG Office
BS EnE: Freshman 2010-2011

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 2A</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>EECS 10</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Chem 1A</td>
<td>4</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

| | 16 | 17 | 19 |

- Gen Ed Recommendation: WR39B-C or CEE60
- EECS10, EECS12, MAE10, or any programming course!
BS EnE: Sophomore 2011-2012

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math</td>
<td>2J/3A</td>
<td>4</td>
<td>Math 2E</td>
</tr>
<tr>
<td>CEE 81A</td>
<td>3</td>
<td>CEE 81B</td>
<td>3</td>
</tr>
<tr>
<td>CEE 30</td>
<td>4</td>
<td>MAE 80</td>
<td>4</td>
</tr>
<tr>
<td>Chem 51A</td>
<td>6</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>15</td>
<td>16</td>
</tr>
</tbody>
</table>

- Gen Ed Recommendation: CEE60
BS EnE: Junior 2012-2013

<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 150, L</td>
<td>5</td>
<td>CEE 130, L</td>
<td>5</td>
</tr>
<tr>
<td>CEE 170</td>
<td>4</td>
<td>CEE 162</td>
<td>4</td>
</tr>
<tr>
<td>Sci. Elect.</td>
<td>4</td>
<td>Eng. Elect.</td>
<td>4</td>
</tr>
<tr>
<td>E190W</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>

- Consider pre-requisites!
- **E190W** is now required (may petition others)
- Science Electives: 1 each in Bio Sci and Earth Systems Sci
<table>
<thead>
<tr>
<th></th>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEE 181A</td>
<td>2</td>
<td>CEE 181B</td>
<td>2</td>
</tr>
<tr>
<td>Eng. Elect.</td>
<td>4</td>
<td>Eng. Elect.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Eng. Elect.</td>
<td>4</td>
</tr>
<tr>
<td>Gen. Ed.</td>
<td>4</td>
<td>Gen. Ed.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>

- Spread Gen Ed (include Econ 20A-B, E190W/UD Writing)
- Consider pre-requisites for Science and Engineering Electives
1. General Education requirements:
 - Writing (3 courses: 2 LD and 1 UD)
 - Arts and Humanities (3 courses)
 - Social and Behavioral Sciences (3 courses)
 - Multicultural Studies / International Issues (1)

2. BSCE and BSEnE already cover:
 - Science and Technology
 - Quantitative, Symbolic, Computational Reasoning

3. Need to consult with HSSoE counselors
Fall 2011 Course Learning Outcome Surveys Now Open

Engineering course learning outcomes surveys are once again available. Students are asked to complete a brief survey for each enrolled undergraduate Engineering course. These are similar to teaching evaluations but rather than focus on the quality of instruction, they focus on whether students have met the outcomes determined for each course. Course learning outcome surveys will remain open until January 8, 2012.

Winter 2011 Course Learning Outcome Surveys Now Available

Engineering course learning outcomes surveys are once again available. Students are asked to complete a brief survey for each enrolled undergraduate Engineering course. These are similar to teaching evaluations but rather than focus on the quality of instruction, they focus on whether students have met the outcomes determined for each course. Course learning outcome surveys will remain open until March 20, 2011.

Fall 2010 Course Learning Outcome Surveys Now Available

Engineering course learning outcomes surveys are once again available. Students are asked to complete a brief survey for each enrolled undergraduate Engineering course. These are similar to teaching evaluations but rather than focus on the quality of instruction, they focus on whether students have met the outcomes determined for each course.

Fall 2010 course learning outcomes surveys are now closed. Thank you for participating.

http://plaza.eng.uci.edu
Undergraduate Programs

The Civil and Environmental Engineering Department offers degree programs in civil engineering and environmental engineering. We emphasize our students' education while consistently meeting industry needs by developing cutting-edge technology in earthquake and structural engineering, transportation systems, and water resources and environmental systems.

Our philosophy is to create and maintain partnerships with our students, as well as industry colleagues, to engineer the future at UC Irvine. As an undergraduate student, you will have the opportunity to take classes from world-class scholars and participate in research projects.

- Major in Civil Engineering
- Major in Environmental Engineering

[Link to the General Catalogue for more information]
Academic Honesty

• Civil and Environmental Engineering is perhaps at the pinnacle of the practice of, and the need for, ethical behavior.

• At you progress through the program, any form of cheating has minimum benefit (on grades) and maximum cost (of not finishing your degree).

• The UCI Policy on Academic Honesty is defined at: http://www.editor.uci.edu/catalogue/appx/appx.2.htm#academic

• Take note of the descriptions of cheating, dishonest conduct, plagiarism, and collusion.

• Ask your instructors to discuss course policies on Academic Honesty, including policies on joint work on HW, labs, or other required tasks.
1. **Professional Registration**: licensure as a professional engineer is required to practice as a civil or environmental engineer.

2. **Steps Toward Licensure: First**…
 a. Complete a BS from an accredited institution (UCI!)
 b. Successfully complete the *Fundamentals of Engineering* exam (material covered includes physics, chemistry, thermo, circuits, mathematics, statics & dynamics, engineering economics, fluids, engineering ethics, strength of materials, computers, etc.)

3. **Steps Toward Licensure: Then**…
 a. After 2 years of work under professional engineers …
 b. … soon 30 units of post-graduate continuing education
 c. Successfully pass the *Principles and Practice of Engineering* (PE)
 d. http://www.ncees.org/exams/professional/
Education Abroad Program

UCIrvine Center for International Education

EAP Planning for Civil Engineering

Why study Civil Engineering abroad?

"As a Civil Engineering student studying abroad, you will gain exposure to different modes of problem solving, leading toward different approaches to the design and implementation of civil engineering projects. In light of the increasing globalization of engineering practice, this acquired knowledge will likely be beneficial in your future engineering career. You will see the significance of US building codes and how these are implemented in other countries, as well as how the US adopts sections of engineering building codes from other countries. EAP programs often have more academic support staff to assist engineering professors with computing, wet/dry, and field labs, which leads toward more meaningful laboratory experiences. Not only will EAP be one of the most memorable times in your life, the international experience will open a world of engineering opportunities in your future."

Professor Michael McNally
Department of Civil & Environmental Engineering

http://www.cie.uci.edu/academics/ce.html
Summary

1. Academic Honesty...
2. Faculty Advising, HSSOE Counselors
3. ABET evaluations versus UCI course evaluations
4. Petitions: substitutions, variations, and related issues
5. Student Clubs? [G-E-T I-N-V-O-L-V-E-D]
6. Research Opportunities, Internships, Jobs
7. Careers: Graduate School? (GRE)
8. Careers: Professional Practice (FE, PE)
Contact Information

HSSOE UG Affairs Office:
1. UG Counselors in REC 305 (824-4334)

Civil & Environmental Engineering:
1. Department Office in EG 4130 (824-5333)
2. CEE web site: http://www.eng.uci.edu/dept/cee/
3. CE Advisor: Professor McNally <mmcnally@uci.edu>
4. EnE Advisor: Professor Rosso bidui@uci.edu

UCI General Catalogue: Your contract with UC
http://www.editor.uci.edu/catalogue/engr/engr.6.htm
Welcome to the UCI American Society of Civil Engineers Student Chapter.

Note: This website is best viewed with Mozilla Firefox or Internet Explorer.

Please reference the cabinet position descriptions and application from the Board menu on the navigation bar, and follow the instructions given to apply.

On this website, you'll find tons of information about our nations first engineering society, and why you should be a part of it.

Here's but a few good reasons to join:

- Networking
- Internship opportunities with renowned companies, like RBF Consulting and Risa Technologies
- Annual Conference includes team competitions, including steel bridge and concrete canoe
- Learn new and exciting skills such as welding steel, mixing concrete, and designing a bridge

http://clubs.uci.edu/asce/
UCI Student Chapter of the Institute of Transportation Engineers

What is ITE?
The Institute of Transportation Engineers (ITE), an international educational and scientific association, is one of the largest and fastest-growing professional transportation organizations in the world. ITE members include engineers, planners, and other transportation professionals who are responsible for meeting society's needs for safe and efficient surface transportation. *US News & World Report* included Traffic Engineer as one of "the nation's eight most secure career tracks".

Why Join ITE?
Membership in the student chapter is an excellent way to become familiar with the transportation field. There are many professional and academic benefits such as:

- Free national ITE membership for the first year
- Free attendance at local and district ITE meetings and conferences
- Place your resume or a link to your homepage on the ITE WebPages
- Participate in the ITE annual project (with an option to earn units toward the Transportation Systems specialization)

Annual Project:
Each year, the UCI ITE Student Chapter completes an annual research project in traffic engineering, transportation modeling, or other areas of transportation engineering. Typically, the annual project is completed in cooperation with the public works departments of one of our local communities. The UCI Chapter's 1999 Annual Project won ITE's James H. Kell Award. In 2000 and 2001, the Chapter received "Honorable Mention" for District 6 Chapter of the Year (based in large measure on our annual project). Last year, the Chapter was awarded 1st Place in the Southern California Section Student Project/Presentation.

For Further Information:
Browse the rest of this Web site or contact the ITE Faculty Advisor, Professor McNally via email <mmcnally@uci.edu> or phone 949-824-8462.
Professional engineering chapter at UCI for engineers interested in the environment:

• learn outside of the classroom with your peers
• discover the diversity of environmental topics
• network with industry for after graduation

Meetings: Wednesdays of Even Weeks, 5:00-7:00, ICF 103
Email: aaee.uci@gmail.com
Facebook: American Academy of Environmental Engineers at UCI
Advisers: Sophomore 2011/12 (Class of 2014)

Dr. Amir Aghakouchak
ET 506A
Water/Environmental
CEE81B, CEE181
amir.a@uci.edu

Dr. Betty Olson
ET 844
Water/Environmental
CEE60
bholson@uci.edu

Dr. Will Recker
AIRB 4074
Transportation
CEE 111
wwrecker@uci.edu

Dr. Jann Yang
EG 4135
Structures
CEE 153
jnyang@uci.edu